WHAT SETS ACTIVEFOCUS™ DESIGN APART?

THE DIFFERENCE IS IN THE DISTANCE.
The ACTIVEFOCUS™ optic is the only multifocal featuring a central portion 100% dedicated to distance.

ACTIVEFOCUS™ Optical Design:
Committed to long-range vision.

- **Contrast at distance†,**4 for a 3 mm pupil and a 4.5 mm pupil.
- **Images derived from Vega, et al. figure 2 (fn5).**

Slit pattern bench test displayed in logarithmic scale of intensity for halo assessment at distance vision. Only IOLs approved in the U.S. are displayed.

Contrast sensitivity is comparable to that of AcrySof® IQ IOLs.1,3

- With glare. Descriptive statistics only.

<table>
<thead>
<tr>
<th>Spatial Frequency (Cycles per Degree)</th>
<th>1.5 cpd (n=127/130)</th>
<th>3 cpd (n=129/132)</th>
<th>6 cpd (n=116/128)</th>
<th>12 cpd (n=103/117)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Contrast Sensitivity (log units)</td>
<td>2.05</td>
<td>1.75</td>
<td>1.50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

- **TECNIS**
- **Multifocal +2.75 D IOL**
- **AcrySof® IQ Multifocal IOL**
- **Standard Deviation**

69.4% of light distributed to distance focal point†

40.5% of light distributed to distance focal point‡

ACTIVEFOCUS™ Optical Design: Contrast at distance.

- **3 mm pupil**
- **4.5 mm pupil**

- **AcrySof® IQ Monofocal**
- **AcrySof® IQ ReSTOR® +2.5 D IOL**

- **Binocular Mesopic Contrast Sensitivity**

- **4–6 Months Post-op**

- **AcrySof® IQ Monofocal IOL**
- **AcrySof® IQ ReSTOR® +2.5 D IOL**

Standard Deviation

69.4% of light distributed to distance focal point1

40.5% of light distributed to distance focal point2

ACTIVEFOCUS™ Optical Design: Committed to long-range vision.

1. **Scaled to mm from microns (μ) for readability.**
2. **Surface profile of the TECNIS Symfony 28.0 D IOL was measured using Bruker Contour white light interferometer on the posterior surface and the diffraction efficiency calculated. Optical profile of the ReSTOR® +2.5 D IOL, model SV25T0 is based on its design profile.**
3. **Trademarks are the property of their respective owners.**
4. **Images derived from Vega, et al. figure 2 (fn5).**
Your outcomes are only as stable as the IOL you choose

Just 5° rotation of a T6 lens results in:
- 0.42 D residual astigmatism
- Residual astigmatism can compromise visual acuity in presbyopia correction

In evidence from thousands of cases entered into AstigmatismFix.com:* TECNIS† Toric IOLs were more likely to rotate ≥5° post-op than AcrySof® IQ Toric IOLs.7

Choose the proven stability of the AcrySof® IQ IOL platform

Built on the same proven platform as AcrySof® IQ Toric IOLs

AcrySof® IQ Toric IOLs: proven rotational stability
- 13 studies
- More than 900 patients
- <5° mean rotation from baseline for all AcrySof® IQ Toric IOLs studied††

Proven Real-World Performance

AcrySof® IQ Toric 0.75% off target ≥5°, by estimated market usage*7
n=3,556

Just 5° rotation of a T6 lens results in:
- 0.42 D residual astigmatism
- Residual astigmatism can compromise visual acuity in presbyopia correction

In evidence from thousands of cases entered into AstigmatismFix.com:* TECNIS† Toric IOLs were more likely to rotate ≥5° post-op than AcrySof® IQ Toric IOLs.7

*AstigmatismFix.com is an online calculator to help surgeons determine if a previously placed toric IOL is ideally aligned. The analysis dataset includes 5,674 entries, with each entry detailing lens and intended orientation identified, in addition to post-operative IOL orientation ≥5° from intended axis. The dataset was weighted based on the estimated market usage of each lens. The full evaluation included AcrySof® IQ Toric, TECNIS† Toric, Trulign† Toric and Staar† Toric IOLs.7

†Trademarks are the property of their respective owners.

††Evaluated studies included misorientation data from 1 to approximately 12 months post-op.

§AcrySof® IQ Toric IOLs that rotated ≥5° off target showed no bias for rotational direction (51% counterclockwise and 49% clockwise, n=3,556, p=0.33).

If the ratio of clockwise to counterclockwise rotation differs significantly from 50:50, the IOL is likely rotating in one direction more often after implantation.
Excellent capsular adhesion\(^9,10\)

AcrySof® BioMaterial Advantage: greater fibronectin binding than TECNIS* IOL material to promote excellent capsule adhesion,\(^9,10\) with low Nd:YAG rates.\(^11,12\)

Fibronectin Adhesion Comparison

![Fibronectin Adhesion Comparison](image)

Engineered for optimal refractive predictability

AcrySof® IOL BioMechanics Advantage: exceptional axial stability\(^13,19\)

- **STABLEFORCE® Haptics**
 - Conforms to the capsular bag for precise centration\(^18,19\)

AcrySof® IQ Toric IOL

- **Excellent axial positioning and rotational stability for refractive predictability**\(^9,12,18,19\)
- **No observed rotational bias**

TECNIS® Toric IOL

- **Observed bias toward counterclockwise rotation**\(^7\)
- **Offset haptic design may increase risk of hyperopic shift**\(^17\)

\(^1\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^2\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^3\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^4\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^5\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^6\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^7\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^8\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^9\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^10\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^11\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^12\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^13\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^14\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^15\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^16\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^17\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^18\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.

\(^19\) *I O L* material to promote excellent capsule adhesion, with low Nd:YAG rates.
Reference the Directions for Use labeling for each IOL for a complete listing of indications, warnings and precautions.

AcrySof® IQ ReSTOR Family of Multifocal IOLs Important Product Information

CAUTION: Federal (USA) law restricts this device to sale by or on the order of a physician. INDICATIONS: The AcrySof® IQ ReSTOR® Posterior Chamber Intraocular Multifocal IOLs include AcrySof® IQ ReSTOR® and AcrySof® ReSTOR® Toric and are intended for primary implantation for the visual correction of aphakia secondary to removal of a cataractous lens in adult patients with and without presbyopia, who desire near, intermediate and distance vision with increased spectacle independence. In addition, the AcrySof® IQ ReSTOR Toric IOL is intended to correct pre-existing astigmatism. The lenses are intended to be placed in the capsular bag. WARNINGS/PRECAUTIONS: Careful preoperative evaluation and sound clinical judgment should be used by the surgeon to decide the risk/benefit ratio before implanting a lens in a patient who has any of the conditions described in the Directions for Use labeling for each IOL. Physicians should target emmetropia, and ensure that IOL centration is achieved. Care should be taken to remove viscoelastic from the eye at the close of surgery. The ReSTOR Toric IOL should not be implanted if the posterior capsule is ruptured, if the zonules are damaged, or if a primary posterior capsulotomy is planned. Rotation can reduce astigmatic correction; if necessary lens repositioning should occur as early as possible prior to lens encapsulation. Some patients may experience visual disturbances and/or discomfort due to multifocality, especially under dim light conditions. A reduction in contrast sensitivity may occur in low light conditions. Visual symptoms may be significant enough that the patient will request explant of the multifocal IOL. Spectacle independence rates vary; some patients may need glasses when reading small print or looking at small objects. Posterior capsule opacification (PCO), when present, may develop earlier into clinically significant PCO with multifocal IOLs. Prior to surgery, physicians should provide prospective patients with a copy of the Patient Information Brochure available from Alcon informing them of possible risks and benefits associated with the AcrySof® IQ ReSTOR® IOLs. Do not resterilize; do not store over 45°C; use only sterile irrigating solutions such as BSS® or BSS PLUS® Sterile Intraocular Irrigating Solutions. ATTENTION: Reference the Directions for Use labeling for each IOL for a complete listing of indications, warnings and precautions.

Take a look at ACTIVEFOCUS™ Optical Design

The difference is in the distance.

Uncompromised distance1,3,4 • Unrivaled stability7,8,14

Active Focus Optical Design

AcrySof® IQ ReSTOR® +2.5 D IOL

Physical Characteristics

<table>
<thead>
<tr>
<th>Model Number</th>
<th>SV2ST3</th>
<th>SV2ST4</th>
<th>SV2ST5</th>
<th>SV2ST6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOL Cylinder Power (Diopters)</td>
<td>1.5 D</td>
<td>2.25 D</td>
<td>3.00 D</td>
<td>3.75 D</td>
</tr>
<tr>
<td>Corneal Plane</td>
<td>1.03 D</td>
<td>1.55 D</td>
<td>2.06 D</td>
<td>2.57 D</td>
</tr>
<tr>
<td>Add-Power</td>
<td></td>
<td></td>
<td>+2.5 D</td>
<td></td>
</tr>
<tr>
<td>Add-Power Spectacle Plane</td>
<td></td>
<td></td>
<td>+2.0 D</td>
<td></td>
</tr>
<tr>
<td>Number of Diffactive Steps</td>
<td>7 steps (Apodized)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td>Ultraviolet and blue light filtering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optic Material</td>
<td>Acrylate/Methacrylate Copolymer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central optic zone</td>
<td>Refractive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optic Diameter</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>13.0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting A-constant</td>
<td>119.17°</td>
<td>119.3°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index of Refraction</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haptic Angulation</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haptic Configuration</td>
<td>STABLEFORCE® Haptic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Theoretical A-constant from product labeling (optical biometry/SRK-T formula at 6m)
** Clinically derived from US clinical study results of 294 eyes at 14 clinical sites (optical biometry/SRK-T formula at 4m)